U-bootstrap percolation: Critical probability, exponential decay and applications

نویسندگان

چکیده

La percolation bootstrap constitue une classe étendue d’automates cellulaires aux conditions initiales aléatoires. Dans ce travail on développe des outils pour étudier en toute généralité l’une trois classes « d’universalité » de modèles deux dimensions appelée souscritique. On introduit la nouvelle notion densités critiques qui jouent le rôle difficultés les (Bollobás et al.), mais adaptée souscritiques. charactérise probabilité critique termes ces quantités emploie lien démontrer résultats nouveaux d’autres déjà connus sur concrets tels que DTBP Spiral, aussi bien qu’une borne supérieure non-triviale générale. Notre approche établit exploite un étroit entre souscritique généralisation convenable orientée classique, ne manquera pas à servir davantage pourrait constituer point d’entrée dans percolationistes généraux. De plus, montre qu’au dessus d’une certaine il y a décroissance exponentielle d’un évènement bras, tandis qu’en dessous l’évènement positive temps d’infection moyen est infini. identifie cette transition comme celle du trou spectral modèle cinétiquement contraint associé. Enfin, caractérise essentiellement propriétés sensibilité au bruit densité fixée évènements bras naturels. En faisant, apporte réponse complète ou partielle questions ouvertes posées par Balister, Bollobás, Przykucki Smith (Trans. Amer. Math. Soc. 368 (2016) 7385–7411), notamment leurs Questions 11, 12, 13, 14 17.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Percolation: Visualizations and Applications

Bootstrap percolation models describe systems as diverse as magnetic materials, fluid flow in rocks and computer storage systems. The models have a common feature of requiring not just a simple connectivity of neighbouring sites, but rather an environment of other suitably occupied sites. Different applications as well as the connection with the mathematical literature on these models is presen...

متن کامل

Subcritical U-bootstrap Percolation Models Have Non-trivial Phase Transitions

We prove that there exist natural generalizations of the classical bootstrap percolation model on Z that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter [28] (in the case d = r = 2) and Schonmann [25] (for all d > r > 2) proved that r-neighbour bootstrap percolation models have trivial critical probabili...

متن کامل

Scaling Limit and Critical Exponents for Two-Dimensional Bootstrap Percolation

Consider a cellular automaton with state space {0, 1}Z2 where the initial configuration ω0 is chosen according to a Bernoulli product measure, 1’s are stable, and 0’s become 1’s if they are surrounded by at least three neighboring 1’s. In this paper we show that the configuration ωn at time n converges exponentially fast to a final configuration ω̄, and that the limiting measure corresponding to...

متن کامل

On the critical probability in percolation

For percolation on finite transitive graphs, Nachmias and Peres suggested a characterization of the critical probability based on the logarithmic derivative of the susceptibility. As a first test-case, we study their suggestion for the Erdős–Rényi random graph Gn,p, and confirm that the logarithmic derivative has the desired properties: (i) its maximizer lies inside the critical window p = 1/n+...

متن کامل

Critical Points of Three–dimensional Bootstrap Percolation–like Cellular Automata

This paper deals with the critical point of three-dimensional bootstrap percolation-like cellular automata. Some general sufficient or necessary conditions for pc = 0 are obtained. In the case of pc > 0, some explicit upper and lower bounds are provided in terms of the critical value of oriented site percolation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'I.H.P

سال: 2021

ISSN: ['0246-0203', '1778-7017']

DOI: https://doi.org/10.1214/20-aihp1112